

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 692 (2007) 1-9

www.elsevier.com/locate/jorganchem

$[MoFe_3S_4]^{3+}$ and $[MoFe_3S_4]^{2+}$ cubane clusters containing a pentamethylcyclopentadienyl molybdenum moiety

Takashi Komuro^a, Hiroyuki Kawaguchi^b, Jianping Lang^a, Takayuki Nagasawa^a, Kazuyuki Tatsumi^{a,*}

^a Research Center for Materials Science, and Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

^b Coordination Chemistry Laboratories, Institute for Molecular Science, Myodaiji, Okazaki 444-8595, Japan

Received 27 April 2006; accepted 3 July 2006 Available online 5 September 2006

Abstract

A series of organometallic molybdenum/iron/sulfur clusters of the general formula $[Cp^*MoFe_3S_4L_n]^m$ ($Cp^* = \eta^5$ - C_5Me_5 ; L = S'Bu, SPh, Cl, I, n = 3, m = 1-; $L_n = I_2(P'Bu_3)$, m = 0; L = 2,6-diisopropylphenylisocyanide (ArNC), n = 7, m = 1+) have been synthesized. A cubane cluster (PPh₄)[Cp^{*}MoFe_3S_4(S'Bu)_3] (2) was isolated from a self-assembly reaction of Cp^{*}Mo(S'Bu)_3 (1), FeCl₃, LiS'Bu, and S₈ followed by cation exchange with PPh₄Br in CH₃CN, while an analogous cluster (PPh₄)[Cp^{*}MoFe_3S_4(SPh)_3] (3) was obtained from the Cp^{*}MoCl₄/FeCl₃/LiSPh/PPh₄Br reaction system or from a ligand substitution reaction of 2 with PhSH. Treatment of 2 with benzoyl chloride gave rise to (PPh₄)[Cp^{*}MoFe_3S_4Cl_3] (4), which was in turn converted to (PPh₄)[Cp^{*}MoFe_3S_4I_3] (5) by the reaction with NaI. A neutral cubane cluster Cp^{*}MoFe_3S_4I_2(P'Bu_3) (6) was generated upon treating 5 with P'Bu₃. Although reduction of 4 by cobaltocene under the presence of ArNC resulted in a disproportionation of the cubane core to give Fe₄S₄(ArNC)₉Cl (7), a similar reduction reaction of 5 produced [Cp^{*}MoFe₃S₄(ArNC)₇]I (8), where the MoFe₃S₄ core was retained. The crystal structures of 4–6, and 8 were determined by the X-ray analysis.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Molybdenum; Iron: sulfide; Cubane cluster; Cyclopentadienyl

1. Introduction

It has been well documented that transition metal sulfide clusters play key roles in biological systems [1a] and in industrial processes as catalysts such as dehydrosulfurization [1b]. Development of rational synthetic routes to transition metal sulfide clusters continues to be a major subject in inorganic chemistry [2], and in particular the synthesis of molybdenum/iron/sulfide clusters have attracted attention in relation to the cluster active sites of nitrogenase [3].

Tetrathiamolybdate, tetrathiatungstate, and related mononuclear sulfide/thiolate complexes have been used

as building blocks for the synthesis of Mo(W)-based sulfide clusters [4], and di- and tri-nuclear metal sulfides have also been reacted with late transition metal complexes in order to obtain heterometallic sulfide clusters of high nuclearity [5,6]. For instance, we have developed convenient routes to heterometallic sulfide clusters based on organometallic tris-sulfide complexes of molybdenum and tungsten, (PPh₄)[Cp*MS₃] (M = Mo, W) [7]. Cubane clusters of transition metal sulfides can also be assembled into large clusters. For example, it was reported that the reaction of [(Cl₄cat)(CH₃CN)MoFe₃S₄Cl₃]²⁻ with NaBPh₄ in the presence of PEt₃ gave an edge-linked double cubane cluster Mo₂Fe₆S₈(PEt₃)₆(Cl₄cat)₂ [8]. We also reported the synthesis of [Mo₂Fe₂S₄]⁴⁺ cubane cluster, Cp*₂Mo₂Fe₂S₄Cl₂, from Cp*Mo(S'Bu)₃ (1) and FeCl₃, and its reaction with

^{*} Corresponding author. Tel.: +81 52 789 2943.

E-mail address: i45100a@nucc.cc.nagoya-u.ac.jp (K. Tatsumi).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2006.07.047

 Li_2S_2 leading to aggregation of the cubane cluster into a cyclic tri-cubane cluster $[Cp^*_2Mo_2Fe_2S_4]_3(\mu-S_4)_3$ [9].

To expand the scope of Fe/Mo/S cluster syntheses, we examined a self-assembly reaction of $Cp^*Mo(S'Bu)_3$ (1) with FeCl₃ in the presence of LiS'Bu and elemental sulfur (S₈). This paper reports that the reaction, followed by a cation exchange with PPh₄Br, gave rise to a MoFe₃S₄ cubane cluster, (PPh₄)[Cp*MoFe₃S₄(S'Bu)₃] (2), and that the subsequent ligand exchange reactions generated a series of cubane clusters having a common Cp*Mo fragment, (PPh₄)[Cp*MoFe₃S₄X₃] (X = SPh (3), Cl (4), I (5)). The reactions of **5** with P'Bu₃ and ArNC/cobaltocene to give Cp*MoFe₃S₄I₂(P'Bu₃) (**6**) and [Cp*MoFe₃S₄(ArNC)₇]I (7, ArNC = 2,6-diisopropylphenylisocyanide) are also reported.

2. Experimental

2.1. General procedures, materials, and solvents

All manipulations were carried out under an atmosphere of argon using a Schlenk technique, and solvents were dried by standard methods. $Cp^*Mo(S^tBu)_3(1)$ [7b], 2,6-diisopropylphenylisocyanide [10], and cobaltocene [11] was synthesized according to literature procedures, while P'Bu₃ was purchased from Kanto Kagaku and used as received. LiSPh and LiS^tBu were prepared from the reactions of PhSH and ^tBuSH with $n-C_4H_9Li$ (1.6 M hexane solution) in THF at 0 °C prior to use. For the measurement of UV-Vis spectra, a U-best-30 spectrometer was used. Infrared spectra were recorded on a Parkin Elmer 2000FT-IR spectrometer. Elemental analyses were performed on a LECO-CHNS microanalyzer where the crystalline samples were sealed in thin silver tubes. Electrochemical studies were preformed with an ALS model-700 electrochemical analyzer, where the cell was equipped with a glassy carbon disk as working electrode, a Pt auxiliary electrode, and an SCE reference electrode. ("Bu₄N)PF₆ was used as a supporting electrolyte.

2.2. Synthesis of $(PPh_4) [Cp^*MoFe_3S_4(S^tBu)_3]$ (2)

A THF (20 mL) solution of **1** (1.41 g, 2.83 mmol) was added to a mixture of FeCl₃ (1.37 g, 8.45 mmol) and LiS'Bu (25.4 mmol) in the same solvent (80 mL), and the subsequent addition of elemental sulfur (0.36 g, 11.2 mmol) produced a deep brown solution. After 4 h of stirring at room temperature, the solution was evaporated under vacuum to dryness. The resulting solid was dissolved in warm CH₃CN (60 mL) and the solution was filtered. A CH₃CN (30 mL) solution of PPh₄Br (0.95 g, 2.27 mmol) was added to the filtrate, and concentration of the solution gave a brown solid. Recrystallization from CH₃CN afforded 1.86 g of **2** (58%). ESI MS: m/z 796 ([Cp*MoFe₃S₄(S'Bu)₃]⁻). UV–Vis (λ_{max} , nm, (ε_{max} , mol⁻¹ dm³ cm⁻¹) CH₃CN): 391(7700). Anal. Calc. for C₄₆H₆₂Fe₃MoPS₇C₂H₃N: C, 49.07 ; H, 5.58; N, 1.19; S, 19.10. Found: C, 49.44; H, 5.50; N, 1.30; S, 18.96%.

2.3. Synthesis of $(PPh_4)[Cp^*MoFe_3S_4(SPh)_3]$ (3)

Method A. Addition of a THF (60 mL) solution of LiSPh (47 mmol) into a slurry of Cp*MoCl₄ (0.87 g, 2.3 mmol) in THF (15 mL) at 0 °C gave a dark red solution. The solution was stirred at room temperature for 1 h, to which a slurry of FeCl₃ (0.89 g, 7.0 mmol) and elemental sulfur (0.30 g, 9.35 mmol) in THF (40 mL) was added, to find that the color immediately turned deep brown. After the mixture was stirred for additional 6 h, volatile materials were removed in vacuo. The residue was dissolved in CH₃CN (20 mL) and centrifuged to remove an insoluble material. A solution of PPh₄Br (0.98 g, 2.3 mmol) in CH₃CN (20 mL) was added to the supernatant. Concentration of the supernatant and the subsequent cooling to -20 °C gave a brown powder, which was recrystallized from CH₃CN to yield brown needles of 3 (1.37 g, 48%). ESI MS: m/z 856 ([Cp*MoFe₃S₄(SPh)₃]⁻). UV–Vis (λ_{max} , nm, CH₃CN): 450 sh. Anal. Calc. for C₅₂H₅₀Fe₃MoPS₇C₂H₃N: C, 52.52; H, 4.33; N, 1.13; S, 18.18. Found: C, 52.31; H, 4.22; N, 1.14; S, 18.91%.

Method B. Benzenethiol (0.25 mL, 2.4 mmol) was added to a solution of 2 (0.87 g, 0.74 mmol) in CH₃CN (20 mL). The reaction mixture was stirred for 30 min, and the solution was concentrated slowly for 10 min to remove ^{*t*}BuSH. Addition of ether to the resulting solution and cooling to -20 °C gave rise to the deposition of 3 as black crystals in 72% (0.66 g).

2.4. Synthesis of $(PPh_4)[Cp^*MoFe_3S_4Cl_3]$ (4)

To a solution of **2** (2.13 g, 1.81 mmol) in CH₃CN (80 mL) was added 2.2 mL of benzoyl chloride (19 mmol). A color of the solution changed from dark yellow to brown. After 1 h of stirring at room temperature, the solution was concentrated. Slow addition of ether resulted in the precipitation of black crystals. The solution was decanted, and the crystals were washed with ether to give 1.16 g of **4** in 68% yield. ¹H NMR (CD₃CN): δ 7.6–8.0 (PPh₄), -4.74 (Cp^{*}, br). IR (KBr): 1588 (w), 1485 (m), 1441 (s), 1434 (s), 1119 (s), 1028 (w), 1003 (w), 755 (w), 728 (s), 692 (s), 409 (w) cm⁻¹. ESI MS: *m/z* 634 ([Cp^{*}MoFeS₄Cl₃]⁻). UV–Vis (λ_{max} , nm): 340. Anal. Calc. for C₃₄H₃₅Fe₃Cl₃MoPS₄: C, 41.98; H, 3.63; S, 13.19. Found: C, 41.64; H, 3.56; S, 13.10%.

2.5. Synthesis of (PPh_4) [$Cp^*MoFeS_4I_3$] (5)

Sodium iodide (0.43 g, 2.9 mmol) was added to 4 (0.40 g, 0.41 mmol) in CH₃CN (50 mL). The color of reaction mixture immediately became yellow-brown. The solution was stirred overnight at room temperature and was centrifuged to remove a white solid. Concentration of the solvent in vacuo resulted in the deposition of 5 as black microcrystals (0.40 g, 77%). ¹H NMR (CDCl₃): δ 7.6–8.5 (PPh₄), -4.16 (Cp^{*}, br). IR (KBr): 1483 (m), 1435 (s), 1376 (m), 1108 (s), 1024 (w), 997 (w), 749 (w), 723 (s),

689 (s), 526 (s), 409 (w) cm⁻¹. UV–Vis (λ_{max} , nm): 340. Anal. Calc. for C₃₄H₃₅Fe₃I₃MoPS₄C₂H₃N: C, 33.57; H, 2.97; N, 1.09; S, 9.96. Found: C, 33.58; H, 3.14; N, 0.98; S, 9.86%.

2.6. Synthesis of $Cp^*MoFe_3S_4I_2(P^tBu_3)$ (6)

P'Bu₃ (0.41 g, 2.0 mmol) in THF (45 mL) was added to a solution of **5** (1.43 g, 1.15 mmol) in CH₃CN (45 mL) at room temperature with stirring. After 4 h, the mixture was centrifuged and the solvent was removed in vacuo. The residue was washed with CH₃CN, CH₃OH, and ether, leaving crude **6** as black powder. Recrystallization from THF/hexane yielded black crystals of **6** (0.80 g, 71%). ¹H NMR (CDCl₃): δ 10.52 (P'Bu₃, br), -2.16 (Cp*, br). IR (KBr): 2998 (s), 2953 (s), 2908 (s), 1481 (s), 1471 (s), 1443 (s), 1425 (s), 1393 (s), 1377 (s), 1172 (s), 1023 (s) cm⁻¹. UV–Vis (λ_{max} , nm (ε , M⁻¹ cm⁻¹), THF): 340 (sh, 14000). Anal. Calc. for C₂₂H₄₂Fe₃I₂-MoPS₄: C, 26.88; H, 4.31; S, 13.05. Found: C, 27.11; H, 4.33; S, 13.13%.

2.7. Reaction of $(PPh_4)[Cp^*MoFe_3S_4Cl_3]$ (4) with ArNC and Cp_2Co

Addition of a CH_3CN solution of cobaltocene (64 mg, 34 mmol) into a mixture of 4 (0.33 g, 0.34 mmol) and ArNC (0.40 g, 2.1 mmol) in 40 mL of CH_3CN caused an immediate precipitation of a brown powder. After 5 h of stirring at room temperature, the solution was decanted

to leave crude $Fe_4S_4(ArNC)_9Cl$ (7) as brown powder. Recrystallization from toluene/hexane afforded black rods of 7 (0.12 g). IR (KBr): 2100 (s, v_{NC}), 2060 (s, v_{NC}) cm⁻¹. Anal. Calc. for $C_{117}H_{153}ClFe_4N_9S_4C_4H_8O$: C, 67.76; H,7.57; N, 5.88; S, 5.98. Found: C, 67.28; H, 7.70; N, 5.61; S, 6.20%.

2.8. Synthesis of $[Cp^*MoFe_3S_4(ArNC)_7]I(8)$

A solution of cobaltocene (48 mg, 2.4 mmol) in 5 mL of CH₃CN was added to a stirred yellow-brown solution of **5** (0.31 g, 0.25 mmol) and ArNC (0.45 g, 2.4 mmol) in CH₃CN (40 mL) at room temperature. The solution turned dark brown. After the reaction mixture was stirred overnight, the solvent was removed in vacuo to leave a dark brown oil. The resulting oil was treated with toluene (100 mL) and centrifuged to remove an insoluble material. Concentration of the supernatant resulted in the deposition of **8** as dark brown crystals (0.45 g, 91%). IR (KBr): 2080 (s, $v_{\rm NC}$) cm⁻¹. UV–Vis (λ , nm): 340 (sh). Anal. Calc. for C₁₀₁H₁₃₄Fe₃I₂MoN₇S₄C₇H₈: C, 63.06; H, 6.96; N, 4.77; S, 6.24. Found: C, 63.21; H, 7.08; N, 4.28; S, 5.95%.

2.9. X-ray crystal structure determination

Crystal data, data collection, and refinement parameters for all structurally characterized complexes are summarized in Table 1. Single crystals of 4 and 5 were obtained from CH_3CN solutions. Slow diffusion of hexane into the

Table 1

	4	5	6	8
Formula	C34H36S4Cl3PFe3Mo	C ₃₄ H ₃₆ S ₄ I ₃ PFe ₃ MoC ₂ H ₃ N	C ₂₂ H ₄₂ S ₄ I ₂ PFe ₃ Mo	C ₁₀₁ H ₁₃₄ N ₇ S ₄ IFe ₃ Mo2C ₇ H ₈
Molecular weight $(g mol^{-1})$	972.70	1289.12	983.08	2149.12
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	$P2_1/c$ (No. 14)	$P2_1/c$ (No. 14)	Pbca (No. 61)	$P2_1/n$ (No. 14)
Color of crystal	Black	Black	Black	Black
Crystal size	$0.80 \times 0.20 \times 0.10$	$0.70 \times 0.30 \times 0.15$	$0.30 \times 0.25 \times 0.20$	$0.25 \times 0.10 \times 0.05$
a (Å)	18.100(5)	15.732(2)	18.7132(2)	16.7985(8)
b (Å)	11.677(9)	9.1851(4)	17.1809(2)	27.8763(3)
<i>c</i> (Å)	19.292(5)	30.7374(7)	21.2565(4)	24.5502(3)
β (°)	108.55(2)	92.936(1)		103.1322(4)
$V(\text{\AA}^3)$	3862(3)	4435.8(4)	6834.2(3)	11195.7(4)
Z	4	4	8	4
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.673	1.930	1.911	1.275
$\mu(Mo K\alpha) (cm^{-1})$	19.09	35.75	37.15	8.89
Number of unique reflections	7159	8975	7721	24903
Number of observations data ^a	3511	7266	6615	11858
Number of parameters residuals	410	442	298	1145
R^{b}	0.041	0.057	0.028	0.079
<i>Rw</i> ^c	0.046	0.072	0.040	0.079
GOF ^d	1.41	2.37	1.59	2.05

^a Observation criterion $I > 3\sigma(I)$.

^b $R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

$$K_{\rm e} = [\{\sum w(|F_{\rm o}| - |F_{\rm c}|)^2\} / \sum wF_{\rm o}^2]^{1/2}.$$

^d GOF = $[\{\sum_{w} | F_o| - |F_c|\}]^2]/(N_o - N_p)]^{1/2}$, where N_o and N_p denote the number of data and parameters.

THF solution gave crystals of **6**, while crystals of **8** were obtained from the toluene solution. Crystals of **4** suitable for X-ray analysis were mounted in glass capillaries and sealed under argon. Diffraction data were collected at room temperature on a Rigaku AFC7R diffractometer employing graphite-monochromated MoK α radiation ($\lambda = 0.710$ 690 Å) and using the ω -2 θ scan technique. Refined cell dimensions and their standard deviations were obtained by least-squares refinements of 25 randomly selected centered reflections. Three standard reflections, monitored periodically for crystal decomposition or movement, showed slight intensity variation over the course of the data collections. The raw intensities were corrected for Lorentz and polarization effects. Empirical absorption corrections based on ψ scans were applied.

Crystals of 5, 6, and 8 were mounted at the top of a quartz fiber using grease, which were set on a Rigaku AFC7 equipped with a MSC/ADSC Quantum1 CCD detector. The measurements were made by using MoK α radiation at -100 °C under a cold nitrogen stream. Four preliminary data frames were measured at 0.5° increments of ω , in order to assess the crystal quality and calculate preliminary unit cell parameters. The intensity images were measured at 0.5° increments of ω for duration of 87 s for 5, 82 s for 6, and 100 s for 8. The frame data were integrated using a d^{*}TREK program package, and the data sets were corrected empirically for absorption using the REQAB program.

All calculations were performed with a TEXSAN program package. All structures were solved by direct methods, and the structures were refined by full-matrix least squares. Anisotropic refinement was applied to all non-hydrogen atoms, and all the hydrogen atoms were put at calculated positions. Crystals of **5** and **8** contain crystal solvents, acetonitrile (**5**) and toluene (**8**), and the toluene carbon atoms of **8** were refined isotropically. Additional information is available as supporting information.

3. Results and discussion

3.1. Synthesis of $(PPh_4)[Cp^*MoFe_3S_4X_3]$ (X = S^tBu (2), SPh (3), Cl (4), I (5))

We previously reported that the reaction of Cp*Mo-(S'Bu)₃(1) with FeCl₃ in THF resulted in C–S bond cleavage of the thiolate, yielding a Mo₂Fe₂S₄ cubane cluster Cp*₂Mo₂Fe₂S₄Cl₂ [9]. Activation of the C–S bond was facilitated by an oxidant FeCl₃, suggesting that 1 may serve as a building block for another class of heteronuclear clusters if a suitable oxidant is employed. It is known that elemental sulfur (S₈) is capable of acting as an oxidizing reagent toward thiolato complexes [1a,12,13], and treatment of iron thiolato complexes with elemental sulfur was reported to generate various Fe/S/SR clusters such as $[Fe_2S_2(SR)_4]^{2-}$, $[Fe_3S_4(SR)_4]^{3-}$, and $[Fe_4S_4(SR)_4]^{2-}$ [12]. We also found that elemental sulfur promotes oxidation of the Mo(IV) center of 1, producing an Mo(VI) complex Cp*Mo(S)₂(S'Bu) [9].

In this context, we examined the reaction of 1 with FeCl₃ in the presence of LiS^tBu and elemental sulfur, anticipating that this might provide a new synthetic route to molybdenum/iron/sulfide clusters. Thus, a THF solution of 1 was added to a mixture of FeCl₃ and LiS^tBu in the same solvent, and the subsequent addition of elemental sulfur gave a deep brown solution, from which a MoFe₃S₄ cubane cluster anion $[Cp^*MoFe_3S_4(S^tBu)_3]^-$ was generated. This cubane cluster was isolated as dark brown crystals of $(PPh_4)[Cp^*MoFe_3S_4(S^tBu)_3]$ (2), after the cation exchange reaction with PPh₄Br in CH₃CN. The yield of 2 reached 58%, when the molar ratio of the reactants was adjusted to $1:FeCl_3:LiS^tBu:S:PPh_4Br = 1:3:9:1:0.8$. Although assignment of oxidation numbers to the metal atoms in clusters is often obscure, one possible choice would be Mo(V) + 3Fe(II).

Cp*Mo(S^tBu)₃ + 3FeCl₃ + 9^tBuSLi + 1/2S₈

Substitution reactions of the thiolate in 2 with anionic ligands were investigated. First, benzenethiol was found to react readily with complex 2 and to replace the tertbutylthiolate ligands, generating (PPh₄)[Cp*Mo- $Fe_3S_4(SPh)_3$ (3) in 72% yield. This cluster anion was also assembled at room temperature from the reaction between Cp*MoCl₄ and excess LiSPh in THF, which presumably generates Cp*Mo(SPh)₃, and the subsequent addition of FeCl₃ (3 equiv) and elemental sulfur (4 equiv based on S). The phosphonium salt (3) was isolated in 48% yield, after a cation exchange with PPh₄Br in CH₃CN. As was mentioned earlier in this section, the Mo₂Fe₂S₄ cluster, Cp*₂Mo₂Fe₂S₄Cl₂, was formed when 1 was treated with FeCl₃, where sulfide was presumably derived from tert-butylthiolate of 1 via C-S bond cleavage. In contrast, addition of elemental sulfur and lithium salt of *tert*-butylthiolate (or benzenethiolate) to the reaction system ended up with the $MoFe_3S_4$ clusters (2 and 3). It is likely that at least a part of the sulfide of 2 is originated from elemental sulfur, and a part could come from tert-butylthiolate via C-S bond rupture. In fact, decrease of elemental sulfur in the reaction of $1/\text{FeCl}_3/$ $LiS^{t}Bu/S_{8}/PPh_{4}Br$ lowered the yield of 2. In the case of the reaction of Cp*MoCl₄/LiSPh/FeCl₃ in the absence of elemental sulfur, the $MoFe_3S_4$ cluster (3) could not be isolated, probably because C-S bond cleavage of benzenethiolate is more difficult compared with that of tertbutylthiolate

T. Komuro et al. / Journal of Organometallic Chemistry 692 (2007) 1-9

(PPh₄)[Cp*MoFe₃S₄(S^tBu)₃] + 3PhSH

2

Method B

It was also possible to substitute the thiolato ligand of 2 with chloride, then with iodide. Addition of an excess of benzoyl chloride to a CH₃CN solution of 2 resulted in the formation of $(PPh_4)[Cp^*MoFe_3S_4Cl_3]$ (4), which was obtained as black crystals in 68% yield. Further treatment of 4 with sodium iodide in CH₃CN gave rise to the iodide analogue of 4, $(PPh_4)[Cp^*MoFe_3S_4I_3]$ (5). These synthetic methods to substitute thiolates on transition metal ions with halides are known, and have been used in the preparation of Fe/Mo/S and Fe/S clusters with chloride or iodide on Fe [14]. Conversely, treatment of 4 with 3 equiv of $LiS^{t}Bu$ or LiSPh in CH₃CN regenerated corresponding thiolato derivatives 2 or 3 in good yields. During these ligand-substitution reactions, the common MoFe₃S₄ cubane core was retained. However, the iodide derivative 5 is less robust than 4, and we have not been successful to prepare 2 and 3 by the analogous reactions 5 with thiolates

5. 77 %

Combustion analyses of C, H, N, S for the crystalline samples of 2-5 are all in good agreement with the formulation, where 2 and 3 appear to be crystallized with CH_3CN as a crystal solvent. X-ray fluorescence microanalysis gave the reasonable Mo:Fe:S:P ratio expected for 2 and 3, and Mo:Fe:S:P:Cl(I) ratios for 4 and 5, respectively. Formation of the MoFe₃S₄ cluster anions in solution was also confirmed by the negative ESI mass spectra of 2-5, which show the signals fitting in well with the calculated isotope patterns. The ¹H NMR spectra were measured for 4 and 5 in CD₃CN. The paramagnetic nature of these clusters is evident in the spectra, exhibiting broad Cp* signals at $\delta = -4.74$ and -4.16 for 4 and 5, respectively. The cyclic voltammogram of 2, 4 and 5 were measured in CH₃CN. Two quasi-reversible redox couples were observed for 2 and 4 in the region of reduction, while for 5 there appeared one quasi-reversible couple and one irreversible peak. The $E_{1/2}$ and E_p values are listed in Table 2. It is apparent that the $[MoFe_3S_4]^{3+}$ cubane core is more readily reduced as the ligand on Fe is substituted from S^tBu to Cl and then to I. The quasi-reversible redox couples are comparable to those found for $[MoFe_3S_4Cl_3\{3, 6-(C_3H_5)_2C_6H_2O_2\}(THF)],$ $[(C_2O_4)XMoFe_3S_4Cl_3]^{3-}$ (X = Cl, CN), and [(mida)-MoFe₃S₄Cl₃]²⁻, which range from -0.75 V to -1.13 V [14b,15].

The crystal structures of 4 and 5 were determined by Xray diffraction analysis, and the selected metric parameters are summarized in Table 3. Because their structures are nearly identical, only the ORTEP drawing of the anion of 4 is presented in Fig. 1. The cubane core can be viewed as a distorted MoFe₃ tetrahedron, to which four sulfur atoms cap the trigonal faces. The average Mo-Fe and Fe-Fe distances of 4 (2.759 Å and 2.752 Å) and 5 (2.736 Å and 2.722 Å) are similar to those of $[(C_2O_4)XMoFe_3S_4Cl_3]^{3-}$ (X = Cl, CN; Mo–Fe, 2.747 Å; Fe–Fe, 2.718 Å) and $[(mida)MoFe_3S_4Cl_3]^{2-}$ (Mo–Fe, 2.730 Å; Fe–Fe, 2.737 Å) [15]. The observed short Mo–Fe and Fe-Fe distances indicate the presence of metal-metal bonding, and interestingly the average Mo-Fe bond distances are not very different from the average Fe-Fe distances despite the larger ionic radii of Mo. On the other hand, the Mo-S bond lengths are 0.04–0.05 Å longer than the Fe-S lengths. The other geometrical parameters are normal.

Table 2Cyclic voltammetric data for 2, 4–6, and 8ª

(3)

Compound	Solvent	Reduction(V) ^b	Oxidation(V) ^b
2 4	CH₃CN	-1.27, qr; -1.44, qr	-0.10, irr, -0.40, qr
	CH₃CN	-0.84, qr; -1.16, qr	0.04, irr
5	CH ₃ CN	-0.64, qr; -1.12, irr	
6	THF	-0.48, qr; -0.83, qr	0.15, irr
8	THF	-1.12, qr	-0.02, irr; 0.82, irr

^a qr = Quasi-reversible redox couple, irr = irreversible signal.

^b V vs. SCE; $E_{1/2}$ values for qr and E_p values for irr.

Table 3 Selected bond distances (Å) and angles (°) for $(PPh_4)[Cp^*MoFe_3S_4Cl_3]$ (4) and $(PPh_4)[Cp^*MoFe_3S_4I_3]$ (5)

	4	5
Mo–Fel	2.752(2)	2.734(1)
Mo-Fe2	2.759(1)	2.734(1)
Mo-Fe3	2.767(1)	2.740(1)
Fe1–Fe2	2.727(2)	2.695(1)
Fe1–Fe3	2.768(2)	2.735(2)
Fe2–Fe3	2.762(2)	2.737(1)
av Mo–S	2.322	2.327
Range	2.313(2)-2.329(2)	2.321(2)-2.332(2)
av Fe–S	2.282	2.276
Range	2.272(3)-2.299(3)	2.262(2)-2.280(2)
av Fe–X	2.200	2.540
Range	2.196(3)-2.205(3)	2.534(1)-2.547(1)
S–Mo–S	103.09	103.47
Range	102.81(8)-103.28(8)	103.37(6)-103.59(6)
Fe-Mo-Fe	59.84	59.67
Range	59.32(4)-60.22(4)	59.07(3)-59.99(3)
Mo-Fe-Fe	60.08	60.16
Range	59.62(4)-60.47(4)	59.88(3)-60.47(3)
Fe–Fe–Fe	60.00	60.00
Range	59.09(5)-60.57(5)	59.01(4)-60.52(3)
Mo-S-Fe	73.67	72.89
Range	73.48(8)-73.86(7)	72.76(5)-73.00(5)
Fe–S–Fe	74.14	73.49
Range	72.94(7)-74.88(8)	72.50(6)-74.14(6)
Mo-Fe-X	143.03	143.71
Range	140.21(9)-144.76(9)	141.15(4)-145.36(4)
S-Fe-X	114.1	113.73
Range	110.9(1)-118.8(1)	112.00(6)-117.54(6)

3.2. Reactions of $[Cp^*MoFe_3S_4X_3]^-$ (X = Cl, I) with P^tBu_3 and ArNC

The majority of transition metal sulfide clusters carry negative charges and are soluble only in polar solvents, where partial dissociation of anionic ligands often hampers

Fig. 1. Structure of the cluster anion of 4, showing 50% probability ellipsoids and the atom-labeling scheme.

isolation of meta-stable cluster structures. In this respect, synthesis of neutral MoFe₃S₄ clusters is attractive, because they may be dissolved in non-polar solvents, and assemblage of metal sulfide clusters in non-polar solvents would expand the scope of cluster synthesis. In fact, we were successful in isolating a $[Fe_8S_7]$ cluster complex relevant to the nitrogenase P-cluster, from a self-assembly reaction of Fe(II) bis-amide, tetramethylthiourea (tmtu), 2,4,6-triisopropylbenzenethiol (HStip), and elemental sulfur (S₈) in toluene [16]. We thus investigated the reactions of **4** and **5** with isocyanides and phosphines, aiming at isolation of neutral MoFe₃S₄ clusters.

When 5 was treated with a slight excess of P^tBu_3 in CH₃CN, one of the iodide ligands came off as PPh₄I, and the void was occupied by phosphine, giving rise to a neutral cluster $Cp^*MoFe_3S_4I_2(P^tBu_3)$ (6) as black crystals in 71% yield. This neutral cluster is highly soluble in THF. In this reaction, no redox process is involved, and the formal electronic configuration of $[MoFe_3S_4]^{3+}$ remains intact. On the other hand, analogous ligand substitution of 4 did not occur, and attempts to prepare the chloride analogue $Cp^*MoFe_3S_4Cl_2(P^tBu_3)$ have failed. The different reactivity between 4 and 5 toward $P^{t}Bu_{3}$ arises probably from the weaker Fe-I bond of 5 relative to the Fe-Cl bond of 4. Interestingly, the reactions of cubane clusters $[Fe_4S_4X_4]^{2-}$ (X = Cl, Br, I) and $[(Cl_4cat)(CH_3CN)MoFe_3S_4Cl_3]^{2-}$ with bulky tertiary phosphine were reported to occur in the presence of NaBPh₄, yielding the neutral clusters Fe_4S_4 - $X(P^{t}Bu_{3})_{3}$ [17] and $(Cl_{4}cat)(CH_{3}CN)MoFe_{3}S_{4}(PR_{3})_{3}$ $(\mathbf{R} = {}^{t}\mathbf{B}\mathbf{u}, {}^{i}\mathbf{P}\mathbf{r})$ [8b], respectively. During these reactions, the cubane core was reduced from $[Fe_4S_4]^{2+}$ or $[MoFe_3S_4]^{3+}$ to $[Fe_4S_4]^+$ or $[MoFe_3S_4]^{2+}$, where phosphine appeared to act as a reducing agent

(PPh₄)[Cp*MoFe₃S₄I₃]

The X-ray-derived molecular structure of 6 is presented in Fig. 2, and selected bond distances and angles are listed in Table 4. The geometrical parameters of 6 are nearly identical to those of 5, and the substitution of one iodide ligand by $P^{t}Bu_{3}$ hardly changed the $[MoFe_{3}S_{4}]^{3+}$ core geometry of 5. This is reasonable, because the transformation from 5 to 6 does not involve a redox process. The Fe1-P distance of 2.4306(8) Å is slightly shorter than those $(Cl_4cat)(CH_3CN)MoFe_3S_4(P^tBu_3)_3$ for found (av. 2.453 Å) [8b], $Fe_4S_4(P'Bu_3)_3Cl$ (av. 2.458(7) Å) [17], and $[Fe_4S_4(P^tBu_3)_4](BPh_4)$ (av. 2.458(9) Å) [6f]. The cyclic voltammogram of 6 was measured in THF, which shows one irreversible oxidation at 0.15 V vs. SCE and two quasi-reversible reduction at -0.48 V and -0.80 V. These values are compared with the redox potentials of 2, 4,

and 5 in Table 2. Evidently, the neutral cluster 6 is more easily reduced than anionic 5, probably due to the difference in the overall charge.

The iron sulfide clusters $[Fe_4S_4X_4]^{2-}$ (X = Cl, Br) were reported to react with RNC (R = ^{*i*}Bu, CH₃), resulting in the corresponding neutral clusters $Fe_4S_4X_2(RNC)_6$ [18]. In these reactions, the $[Fe_4S_4]^{2+}$ core is not reduced. Our attempts to react **4** and **5** with ^{*i*}BuNC and ArNC (ArNC = 2,6-diisopropylphenylisocyanide), however, did not lead to isolable products. On the other hand, the reduction of $[Fe_4S_4I_4]^{2-}$ was recently attained by cobaltocene in the presence of arylisocyanide, and yet another neutral cluster $Fe_4S_4I(2,6-Me_2C_6H_3NC)_9$ was obtained [6h]. The electrochemical data shown in Table 2 indicate that **4** and **5** could also be reduced by cobaltocene (-0.91 V vs. SCE) [19]. Therefore, we examined the reactions of **4** and

Fig. 2. Structure of 6, showing 50% probability ellipsoids and the atomlabeling scheme.

Table 4 Selected bond distances (Å) and angles (°) for $Cp^*MoFeS_4I_2(P'Bu_3)$ (6)

beleeted bond distances (if) and angles (i) for op morestig(i bas) (v)			
Mo–Fe1	2.7256(4)	Fe1–P	2.4306(8)
Mo-Fe2	2.7372(5)	Fe2–I1	2.5356(5)
Mo–Fe3	2.7454(4)	Fe3–I2	2.5260(4)
Fe1–Fe2	2.6839(6)	av Mo–S	2.3232
Fe1–Fe3	2.7225(6)	Range	2.3152(7)-2.3301(7)
Fe2–Fe3	2.7497(6)	av Fe–S	2.2690
		Range	2.2311(8)-2.2870(8)
av S–Mo–S	103.25	av Fe–Fe–I	146.33
Range	102.94(3)-103.74(3)	Range	142.69(2)-149.23(2)
av Fe-Mo-Fe	59.58	av S-Fe-I	114.07
Range	58.85(1)-60.20(1)	Range	110.35(2)-119.52(3)
av Mo-Fe-Fe	60.56		
Range	60.36(1)-60.79(1)	S1–Fe1–P	111.01(3)
av Fe-Fe-Fe	60.00	S2–Fe1–P	120.03(3)
Range	58.74(1)-61.14(1)	S4–Fe1–P	108.98(3)
av Mo-S-Fe	73.09	Mo-Fe2-I1	144.33(2)
Range	72.79(2)-73.41(2)	Mo-Fe3-I2	138.79(2)
av Fe-S-Fe	73.67	Mo-Fe1-P	149.67(2)
Range	72.08(2)-75.06(3)	Fe2–Fe1–P	136.63(2)
Fe3–Fe1–P	145.30(2)		

5 with cobaltocene in the presence of 1 equiv of ArNC. In the case of 4, the reduction reaction occurred in a complicate manner, involving a metal-displacement of the $MoFe_3S_4$ core, from which we were able to isolate only an $[Fe_4S_4]^+$ cluster $Fe_4S_4Cl(ArNC)_9$ (7) as black crystals. The cluster 7 was characterized based on IR and elemental analysis, where 7 was crystallized with THF as a crystal solvent. In contrast, the reduction of 5 by cobaltocene proceeded as was expected, and an cationic cubane cluster $[Cp^*MoFe_3S_4(ArNC)_7]I$ (8) was obtained as dark brown crystals in a good yield. During the reaction, the cluster core $[MoFe_3S_4]^{3+}$ was reduced to $[MoFe_3S_4]^{2+}$. The IR spectrum of **8** shows a N=C stretching band at 2080 cm⁻¹, while the N \equiv C bands of 7 appear at 2060 and 2100 cm^{-1} . The cyclic voltammogram of 8 was recorded in THF, and the data are added to Table 2. A quasi-reversible redox couple in the region of reduction was observed at the potential $(E_{1/2})$ more negative than those of 4-6. This trend is understandable because the $[MoFe_3S_4]^{2+}$ core of **8** is more electron rich, and thus more difficult to be reduced, than the $[MoFe_3S_4]^{3+}$ core of 4–6. In this regard, it is interesting that the corresponding $E_{1/2}$ values of 2 are more negative than that of 8

(PPh₄)[Cp*MoFe₃S₄X₃] + ArNC

(5)

According to the X-ray analysis, an asymmetric unit of crystals of **8** consists of one cationic cubane cluster of $[Cp^*MoFe_3S_4(ArNC)_7]$, one discrete iodide, and two toluene molecules. The structure of the cluster cation is presented in Fig. 3, and selected bond distances and angles are listed in Table 5. To the cuboidal MoFe₃S₄ frame, one Cp^{*} and seven isocyanide ligands are bound. Given seven isocyanides, coordination geometries of the three irons are not chemically equivalent. There are one octahedral Fe atom carrying three isocyanide ligands, and two trigonal-bipyramidal Fe atoms with two isocyanide. As a consequence, the MoFe₃S₄ core structure of **8** departs markedly from those of **4–6**. The most notable deformation comes from elongation of the meal–metal and iron–sulfur

Fig. 3. Structure of the cluster cation of 8, showing 50% probability ellipsoids and the atom-labeling scheme. The aryl groups of isocyanide are omitted for clarity.

distances associated with the octahedral Fe. Both the Mo– Fe(octahedral) distance of 2.915(2) Å and Fe(octahedral)– Fe(trigonal-bipyramidal) distances of 3.367(2) Å and

Table 5 Selected bond distances (Å) and angles (°) for [Cp*MoFeS₄(ArNC)₇]I (8)

	()		, , , , , , , , , , , , , , , , , , ,
Mo-Fe1	2.915(2)	Fe1–S1	2.314(3)
Mo-Fe2	2.746(2)	Fe1–S3	2.326(3)
Mo-Fe3	2.752(2)	Fe1–S4	2.325(3)
Fe1–Fe2	3.367(2)	Fe2–S1	2.267(3)
Fe1–Fe3	3.352(2)	Fe2–S2	2.173(3)
Fe2–Fe3	2.665(2)	Fe2–S4	2.248(3)
Mo-S1	2.291(3)	Fe3–S2	2.183(3)
Mo-S2	2.348(3)	Fe3–S3	2.245(3)
Mo-S3	2.297(3)	Fe3–S4	2.284(3)
Fel-Cl1	1.84(1)	N1-C11	1.16(1)
Fe1–C24	1.85(1)	N2-C24	1.18(1)
Fe1–C37	1.85(1)	N3-C37	1.16(1)
Fe2-C50	1.81(1)	N4-C50	1.18(1)
Fe2-C63	1.84(1)	N5-C63	1.18(1)
Fe3-C77	1.84(1)	N6-C77	1.16(1)
Fe3-C89	1.84(1)	N7–C89	1.15(1)
Fe1-Mo-Fe2	72.92(4)	Mo-S1-Fe1	78.54(8)
Fe1-Mo-Fe3	72.46(4)	Mo-S1-Fe2	74.10(8)
Fe2-Mo-Fe3	58.00(4)	Mo-S2-Fe2	74.68(8)
Mo-Fe1-Fe2	51.22(4)	Mo-S2-Fe3	74.70(9)
Mo-Fe1-Fe3	51.52(3)	Mo-S3-Fe2	78.17(8)
Mo-Fe2-Fe1	55.86(4)	Mo-S3-Fe3	74.59(8)
Mo-Fe2-Fe3	61.12(4)	Fe1-S1-Fe2	94.61(9)
Mo-Fe3-Fe1	56.02(4)	Fe2-S2-Fe3	75.45(9)
Mo-Fe3-Fe2	60.88(4)	Fe1-S3-Fe3	94.3(1)
		Fe1-S4-Fe2	94.8(1)
		Fe1-S4-Fe3	93.3(1)
		Fe2–S4–Fe3	72.04(9)
Fel-Cll-Nl	171.9(9)	C11-N1-C12	175(1)
Fe1-C24-N2	172.8(9)	C24-N2-C25	166.2(9)
Fe1-C37-N3	176.7(9)	C37–N3–C38	169(1)
Fe2-C50-N4	175.7(8)	C50-N4-C51	170(1)
Fe2-C63-N5	175.5(9)	C63-N5-C64	174(1)
Fe3-C76-N6	174.3(9)	C76-N6-C77	173(1)
Fe3-C89-N7	177.3(9)	C89-N7-C90	166(1)

3.352(2) Å are substantially longer than the corresponding metal-metal distances of **4**–**6**, while the other metal-metal distances of **8** are comparable to **4**–**6**. It appears that the octahedral Fe is electronically saturated and does not form strong metal-metal bonds. Likewise, the Fe(octahedral)–S bond lengths (av. 2.322 Å) are longer than those of **4**–**6**, and than Fe(trigonal-bipyramidal)–S bonds (av. 2.233 Å). A similar distortion of the MoFe₃S₄ core geometry was observed for [MoFe₃S₄(S₂CNEt₂)₅]⁻ and MoFe₃S₄-(S₂CNR₂)₅ (R = Et, Bu, C₅H₁₀) [20]. The other intriguing geometrical features of **8** are the planar arrangement of Fe2, Fe3, S2, and S4, and the relatively short Fe2–S2 and F3–S2 bonds concomitant with the long Mo–S2 bond.

Noteworthy here is difference in the coordination geometries at Fe between 8 and 7 (or $Fe_4S_4I(2,6-Me_2C_6H_3NC)_9$) [6h]. For the latter two Fe_4S_4 clusters, aside from the tetrahedral Fe atom which binds chloride (or iodide), each of the remaining three Fe atoms carries three isocyanides, whereas for 8 two Fe atoms each binds only two isocyanides. This may be attributed to the steric bulk of Cp^{*}, or to the electronic property characteristic of the Cp^{*}Mo moiety in the [MoFe_3S_4] cluster.

4. Supplementary material

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 609450 for compound **4**, CCDC No. 609451 for compound **5**, CCDC No. 609452 for compound **6**, and CCDC No. 609453 for compound **8**. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

This research was financially supported by Grant-in-Aids for Scientific Research on Priority Area (Nos. 14078101 and 14078211 "Reaction Control of Dynamic Complexes") from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

- [1] (a) H. Beinert, R.H. Holm, E. Münck, Science 277 (1997) 653;
 (b) M.D. Curtis, S.H. Druker, J. Am. Chem. Soc. 119 (1997) 1027.
- [2] E.I. Stiefel, K. Matsumoto, Transition Metal Sulfur Chemistry, Biological and Industrial Significance, American Chemical Society, Washington, DC, 1996.
- [3] (a) B. Schmid, M.W. Ribbe, O. Einsle, M. Yoshida, L.M. Thomas, D.R. Dean, D.C. Rees, B.K. Burgess, Science 296 (2002) 352;
 (b) M.-H. Suh, L. Pulakat, N.J. Gavini, Biol. Chem. 278 (2003) 5353;
 (c) O. Einsle, F.A. Tezcan, L.A. Andrade, B. Schmidt, M. Yoshida, J.B. Howard, D.C. Rees, Science 297 (2002) 1969.
- [4] (a) A. Müller, E. Diemann, R. Jostes, H. Bögge, Angew. Chem., Int. Ed. Engl. 20 (1981) 934;
 - (b) D. Coucouvanis, Acc. Chem. Res. 14 (1981) 201;
 - (c) R.H. Holm, Adv. Inorg. Chem. 38 (1992) 1;

(d) N.C. Payne, N. Okura, S. Otsuka, J. Am. Chem. Soc. 105 (1983) 245;

- (e) S.-W. Lu, N. Okura, T. Yoshida, S. Otsuka, K. Hirotsu, T. Higuchi, J. Am. Chem. Soc. 105 (1983) 7470;
- (f) Y. Arikawa, H. Kawaguchi, K. Kasiwabara, K. Tatsumi, Inorg. Chem. 38 (1999) 4549.
- [5] (a) S. Kabashima, S. Kuwata, M. Hidai, J. Am. Chem. Soc. 121 (1999) 7837;

(b) T. Ikeda, S. Kuwata, Y. Mizobe, M. Hidai, Inorg. Chem. 37 (1998) 5793;

(c) M. Hidai, S. Kuwata, Y. Mizobe, Acc. Chem. Res. 33 (2000) 46;

(d) M.A. Mansour, M.D. Curtis, J.W. Kampf, Organometallics 16 (1997) 275;

- (e) P. Li, M.D. Curtis, Inorg. Chem. 29 (1990) 1242;
- (f) P. Braunstein, A. Tiripicchio, M. Tiripicchio-Camellini, E. Sappa, Inorg. Chem. 20 (1981) 3586;
- (g) B.A. Cowans, R.C. Haltiwanger, M. Rakowski DuBois, Organometallics 6 (1987) 995;
- (h) T. Shibahara, Adv. Inrog. Chem. 37 (1991) 143;
- (i) R. Hernández-Molina, A.G. Sykes, J. Chem Soc., Dalton Trans. (1997) 3137.
- [6] (a) D. Coucouvanis, Acc. Chem. Res. 24 (1991) 1;
 - (b) D. Coucouvanis, P.R. Challen, S.-M. Koo, M.W. Davis, W. Butler, W.R. Dunham, Inorg. Chem. 28 (1989) 4187;
 - (c) P.R. Challen, S.-M. Koo, W.R. Dunham, D. Coucouvanis, J. Am. Chem. Soc. 112 (1990) 2455;
 - (d) P.R. Challen, S.-M. Koo, C.G. Kim, W.R. Dunham, D. Coucouvanis, J. Am. Chem. Soc. 112 (1990) 8606;
 - (e) L. Cai, B.M. Segal, J.R. Long, M.J. Scott, R.H. Holm, J. Am. Chem. Soc. 117 (1995) 8863;
 - (f) C. Goh, B.M. Segal, J. Huang, J.R. Long, R.H. Holm, J. Am. Chem. Soc. 118 (1996) 11844;

(g) J. Huang, S. Mukerjee, B.M. Segal, H. Akashi, J. Zhou, R.H. Holm, J. Am. Chem. Soc. 119 (1997) 8662;

- (h) J.-P. Lang, K. Tatsumi, H. Kawaguchi, J.-M. Lu, P. Ge, W. Ji, S. Shin, Inorg. Chem. 35 (1996) 7924;
- (i) M. Harmjanz, W. Saak, D. Haase, S. Pohl, Chem. Commun. (1997) 952;
- (j) J.-P. Lang, K. Tatsumi, Inorg. Chem. 37 (1998) 6308;
- (k) H. Yu, Q.-F. Xu, Z.-R. Sun, S.-J. Ji, J.-X. Chen, Q. Liu, J.-P. Lang, K. Tatsumi, Chem. Commun. (2001) 2614.
- [7] (a) H. Kawaguchi, K. Tatsumi, J. Am. Chem. Soc. 117 (1995) 3885;
 (b) H. Kawaguchi, K. Yamada, J.-P. Lang, K. Tatsumi, J. Am. Chem. Soc. 119 (1997) 10346;

(c) J.-P. Lang, H. Kawaguchi, S. Ohnishi, K. Tatsumi, J. Chem. Soc., Chem. Commun. (1997) 405; (d) K. Tatsumi, J.-P. Lang, S. Ohnishi, T. Nagasawa, H. Kawaguchi, J. Inorg. Biochemi. 67 (1997) 269;

- (e) J.-P. Lang, H. Kawaguchi, K. Tatsumi, Inorg. Chem. 36 (1997) 6447;
- (f) J.-P. Lang, K. Tatsumi, Inorg. Chem. 37 (1998) 160;
- (g) J.-P. Lang, H. Kawaguchi, K. Tatsumi, J. Organomet. Chem. 569 (1998) 109;
- (h) J.-P. Lang, K. Tatsumi, Inorg. Chem. 38 (1999) 1364;
- (i) J.-P. Lang, K. Tatsumi, J. Organomet. Chem. 579 (1999) 332;
- (j) J.-P. Lang, H. Kawaguchi, K. Tatsumi, J. Chem. Soc., Chem. Commun. (1999) 2315;
- (k) J.-P. Lang, Q.-F. Xu, W. Ji, H.I. Elim, K. Tatsumi, Eur. J. Inorg. Chem. (2004) 86.
- [8] (a) K.D. Demadis, C.F. Campana, D. Coucouvanis, J. Am. Chem. Soc. 117 (1995) 7832;
 (b) F. Osterloh, B.M. Segal, C. Achim, R.H. Holm, Inorg. Chem. 39

(2000) 980.

- [9] H. Kawaguchi, K. Yamada, S. Ohnishi, K. Tatsumi, J. Am. Chem. Soc. 119 (1997) 10871.
- [10] P.C.J. Kamer, R.J.M. Nolte, W. Drenth, J. Am. Chem. Soc. 110 (1988) 6818.
- [11] R.B. King, Organometall. Synth. 1 (1965) 70.
- [12] (a) K.S. Hagen, A.D. Watson, R.H. Holm, J. Am. Chem. Soc. 105 (1983) 3905;
 (b) G. Christou, C.D. Garner, J. Chem. Soc., Dalton. Trans. (1978)
- 1093.
 [13] (a) D. Coucouvanis, S.-J. Chen, B.S. Mandimutsira, C.G. Kim, Inorg. Chem. 33 (1994) 4429;
- (b) K.D. Demadis, D. Coucouvanis, Inorg. Chem. 34 (1995) 3658.
- [14] (a) G.B. Wong, M.A. Bobrik, R.H. Holm, Inorg. Chem. 17 (1978) 578;

(b) R.E. Palermo, R.H. Holm, J. Am. Chem. oc. 105 (1983) 4310;
(c) R.W. Johnson, R.H. Holm, J. Am. Chem. Soc. 100 (1978) 5338;
(d) D. Coucouvanis, S. Al-Abmad, A. Salifoglou, V. Papaefthymiou, A. Kostikas, A. Simpoulos, J. Am. Chem. Soc. 114 (1992) 2472.

- [15] K.D. Demadis, D. Coucouvanis, Inorg. Chem. 34 (1995) 436.
- [16] Y. Ohki, Y. Sunada, M. Honda, M. Katada, K. Tatsumi, J. Am. Chem. Soc. 125 (2003) 4052.
- [17] M.A. Tyson, K.D. Demadis, D. Coucouvanis, Inorg. Chem. 34 (1995) 4519.
- [18] (a) J.A. Weigel, K.K.P. Srivastava, E.P. Day, E. Münck, R.H. Holm, J. Am. Chem. Soc. 112 (1990) 8015;
 - (b) C. Goh, J.A. Weigel, R.H. Holm, Inorg. Chem. 33 (1994) 4861.
- [19] D. O'Hare, J.C. Green, T. Marder, S. Collins, G. Stringer, A.K. Kakkar, N. Kaltsoyannis, A. Kuhn, R. Lewis, C. Mehnert, P. Scott, M. Kurmoo, S. Pugh, Organometallics 11 (1992) 58.
- [20] S. Harris, Polyhedron 8 (1989) 2843.